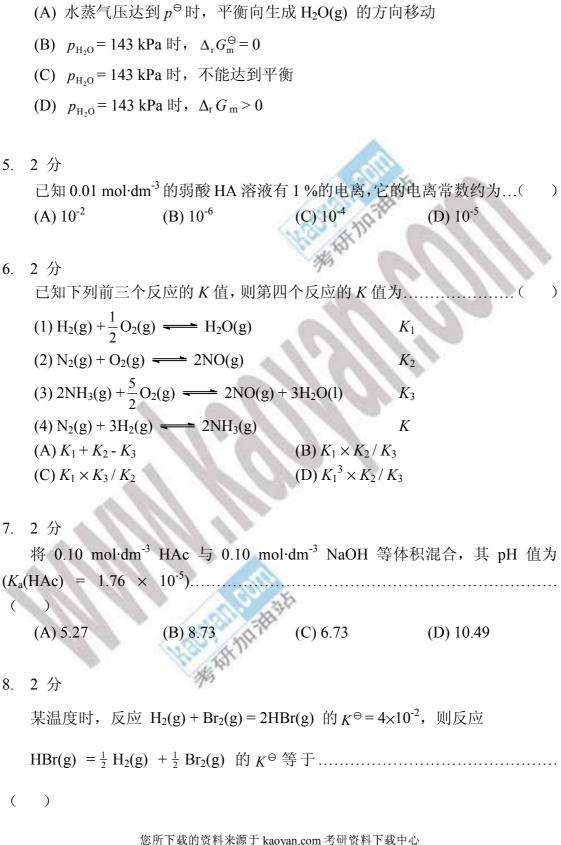


青岛大学 2009 年硕士研究生入学考试试题


科目代码:	830	科目名称:	<u> </u>	_(共7页)
-------	-----	-------	----------	--------

请考生写明题号,将答案全部答在答题纸上,答在试卷上无效

一、选择题 (共15 题,30 分)	
1. 2分	COLUMN
<u>-</u>	-0.372℃时结冰, 对这个现象的解释是(水
的 K _f = 1.86 K·kg·mol ⁻¹)	(10) (M)
()	1. 18 kg
(A) KCl 未完全缔合	(B) 离子互吸
(C) 离子互斥	(D) 溶液蒸气压下降
	011.9
2. 2 分	1.811.
25° C, $2NO_2(g) \longrightarrow N_2O_4(g)$, K_c	与 $K_p(K^{\ominus})$ 的比值($p^{\ominus} = 100 \text{ kPa}$) K_c/K_p 等
于	# #
()	
(A) $\frac{1}{0.0831 \times 298} = 0.0404$	(B) $8.31 \times 25 = 207.8$
(C) $0.0831 \times 298 = 24.8$	(D) $0.0821 \times 298 = 24.5$
4 1/2/1/1/1/1/2	
3. 2分	
	ol·dm ⁻³ Na ₂ CO ₃ 溶液 1.0 dm ³ ,由 CaSO ₄ 转
化为 CaCO ₃ 的 Ca ²⁺ 为	oran maze symmetric and his ease 4 h
()	
$(K_{\rm sp}({\rm CaCO_3}) = 2.8 \times 10^{-9}, K_{\rm sp}({\rm CaSO_4}) = 9$	0.1×10-6 C。的相对原子质量为400
260	_
(A) 2.4×10^2 g	(B) 4.8×10^2 g
(C) 60 g	(D) 1.5 g
4. 2 分	
	,饱和水蒸气压为 143 kPa,则对于
H ₂ O(l)	
.,	oyan.com 考研资料下载中心

获取更多考研资料,请访问 http://download.kaoyan.com

(A)
$$\frac{1}{4 \times 10^{-2}}$$

(A)
$$\frac{1}{4 \times 10^{-2}}$$
 (B) $\frac{1}{\sqrt{4 \times 10^{-2}}}$

(C)
$$4 \times 10^{-2}$$

(D)
$$\sqrt{4 \times 10^{-2}}$$

9. 2分

在一定温度下, $Zn(OH)_2$ 饱和溶液的 pH 为 8.3,则该温度时 $Zn(OH)_2$ 的 K_{SP} 为...()

- (A) 8.0×10^{-18}
- (B) 4.0×10^{-18}
- (D) 4.0×10^{-12}

10. 2分

配制 pH = 7 的缓冲溶液时,选择最合适的缓冲对是....

 $(K_a(HAc) = 1.8 \times 10^{-5}, K_b(NH_3) = 1.8 \times 10^{-5};$

 H_3PO_4 : $K_{a1} = 7.52 \times 10^{-3}$, $K_{a2} = 6.23 \times 10^{-8}$, $K_{a3} = 4.4 \times 10^{-13}$

 H_2CO_3 : $K_{a1} = 4.30 \times 10^{-7}$, $K_{a2} = 5.61 \times 10^{-11}$)

(A) HAc-NaAc

- (B) NH₃-NH₄Cl
- (C) NaH₂PO₄-Na₂HPO₄
- (D) NaHCO₃-Na₂CO₃

11. 2分

将 0.01 mol NaOH 加到下列溶液中, NaOH 溶解后,溶液的 pH 值变化最小 的是...(

- (A) $0.10 \text{ dm}^3 0.01 \text{ mol} \cdot \text{dm}^{-3} \text{ H}_3 \text{PO}_4$
- (B) 0.10 dm³ 0.01 mol·dm⁻³ HNO₃
- (C) 0.10 dm³ 0.2 mol·dm⁻³ HAc
- (D) 0.10 dm³ 0.2 mol·dm⁻³ HNO₃

12. 2分

下列过程中, ΔS 为负值的是......

- (A) 液态溴蒸发变成气态溴
- (B) $SnO_2(s) + 2H_2(g) = Sn(s) + 2H_2O(1)$
- (C) 电解水生成 H₂和 O₂
- (D) 公路上撒盐使冰熔化

13.	2分 同温下,渗透压	运 最 大 的	水溶液是	
	(A) $0.01 \text{ mol} \cdot \text{kg}^{-1} \text{ Ba}(\text{NO}_3)_2$ (B)	0.01 mol·kg ⁻¹ KN0	O_3	
	(C) 0.01 mol·kg ⁻¹ HCOOH (D) 0.01 mol·kg ⁻¹ 蔗糖	糖溶液	
		COLL	E .	
14.	2 分	A STATE OF THE STA		
	H ₂ PO ₄ 的 共 轭 碱 是	WALL COM		
()	3/6	11111	
	(A) H ₃ PO ₄	$(B) HPO_4^{2-}$	(10)	
	$(C) H_2 PO_3^-$	(D) PO_4^{3-}	19	
			1.	
15.	2 分	311 F. F.		
	温度升高导致反应速率明显增加	加的主要原因是.		
()	\mathcal{I}		
	(A) 分子碰撞机会增加	(B) 反应物压力	增加	
	(C) 活化分子数增加	(D) 活化能降低		
_	填空题 (共10题 20分)			
一、 16.	2分			
10.	在[Ni(CN) ₄] ⁴ 配离子中, Ni 是处于	貳化态; 它与 Ni 的	配合物是等电子体;	
它们]的空间构型都是	*	o	
	Han With Un.			
17.	2 分			
	反应 2O₃(g) → 3O₂(g) 的活化	能为 117 kJ·mol ⁻¹	, O ₃ 的 Δ _f H ^Θ _m 为 142	,
kJ∙n	nol ⁻¹ ,则该反应的反应热为	;	; 逆反应的活化能为	

已知:
$$Zn(OH)_4^{2-} + 2e^- = Zn + 4OH^ \varphi^{\ominus} = -1.22 \text{ V}$$
 $Zn^{2+} + 2e^- = Zn$ $\varphi^{\ominus} = -0.76 \text{ V}$ 计算 $Zn(OH)_4^{2-}$ 的 K_{\oplus} 。 K_{\oplus} =

19. 2分

25 °C,KNO₃ 在水中的溶解度是 6 mol·dm⁻³,若将 1 mol 固体 KNO₃ 置于水中,则 KNO₃ 变成盐溶液过程的 ΔG 的符号为_______, ΔS 的符号为______

20. 2分

AgClO₄ 在苯中的溶解性明显高于在烷烃中的溶解性,用 Lewis 酸碱性质对此事实作出的解释

是

21. 2分

反应 $2A + B \longrightarrow 2D$ 的 $K_p = p_D^2 / p_B$,升高温度和增大压力都使平衡逆向移动,则正反应是_______热反应, K_c 的表达式是_____。

22. 2分

H₂O 和 HAc 两种溶剂,其中 溶剂对强酸具有较大的拉平效应。

23. 2分

测定 NO_2 热分解速率,初始浓度为 0.0455mol·dm⁻³ 时,初速率为 0.0132 mol·dm⁻³·s⁻¹,若初始浓度变为 0.0324 mol·dm⁻³ 时,初速率是 0.0065 mol·dm⁻³·s⁻¹,则反应开始时的级数为 级。

24. 2分

反应 $C(g) + O_2(g) = CO_2(g)$ 的 $\Delta_r H_{m}^{\Theta}_{298} < 0$,在一恒容绝热容器中 $C 与 O_2$ 发生 反应,则该体系的 ΔT 于零, ΔG 于零, ΔH 于零。

25.2 分

 BF_3 (硬酸)在工业上通常以乙醚(C_2H_5) $_2$ O(硬碱)溶液的形式使用, BF_3 (g)溶于 (C_2H_5) $_2$ O(I)后形成的配合物的结构式为_____。

三、计算题 (**任选四题, 每题 15 分, 共 60 分**)

26.15 分

已知 25°C 时半反应: $Ag^+(aq) + e^- = Ag(s)$ 的 $\varphi^{\Theta} = 0.80 \text{ V}$

求: (1) 反应
$$2Ag(s) + 2H^{+}(aq) = 2Ag^{+}(aq) + H_2$$
 的 K_1 ;

(2) 原电池自发反应:

$$2Ag(s) + 2H^{+}(aq) + 2I^{-}(aq) = 2AgI(s) + H_{2}(g)$$

当[H⁺] = [Γ] = 0.10 mol·dm⁻³, $p_{\text{H2}} = p^{\Theta}$ 时的电动势为 +0.03 V,求该电池的 E^{Θ} 和上述反应的平衡常数 K_2 ;

- (3) $K_{sp}(AgI)$;
- (4) Ag 能否从氢碘酸中置换出氢。

27.15 分

是一级反应,在 150℃ 时 $k_1 = 2.0 \times 10^{-4} \text{ s}^{-1}$,150℃ 使气态环丁烯进入反应器,初始压力是 6.66 kPa。

- (1) 30 min 后环丁烯的浓度是多少?
- (2) 当环丁烯分压变成 3.33 kPa, 所需时间是多少秒?
- (3) 若环丁烯初始压力为 13.3 kPa, 当其分压变为 3.33 kPa 所需时间是多少?

28.15 分

已知下列热力学数据(298K)和反应方程式

	$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\Theta}$ / kJ·mol ⁻¹	$\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\Theta}$ / kJ·mol ⁻¹	$S_{\mathrm{m}}^{\Theta} / \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$
$Fe_2O_3(s)$	-741.0	-822.1	90.0
$H_2(g)$	0.0	0.0	130.59
Fe(s)	0.0	0.0	27.2

H₂O(g) -228.59 -241.83 188.72

$$Fe_2O_3(s) + 3H_2(g) \implies 2Fe(s) + 3H_2O(g)$$

判断在室温(298K)用压力为 101.3 kPa 含有饱和 $H_2O(g)$ (p_{H_2O} = 3.17 kPa) 的 H_2 气通过 $Fe_2O_3(s)$ 能否将它还原为金属铁?

29.15 分

基态氢原子吸收一个具有 97.2 nm 波长的光子后,放出 486 nm 波长的光子,问氢原子的终态 n 等于几?

 $(h = 6.626 \times 10^{-34} \text{J·s}; 基态氢原子的能量为 2.18 \times 10^{-18} \text{J·电子}^{-1})$

30.15 分

已知: $\varphi^{\ominus}(Ag^{+}/Ag) = 0.7991 \text{ V}$, $\varphi^{\ominus}(AgBr/Ag) = 0.071 \text{ V}$, $\varphi^{\ominus}(Zn^{2+}/Zn) = -0.763 \text{ V}$,

$$\varphi^{\ominus} (Ag(S_2O_3)_2^{3-}/Ag) = 0.010 \text{ V}$$

- 求: (1) 将 50 cm 3 0.15 mol·dm $^{-3}$ AgNO $_3$ 与 100 cm 3 0.30 mol·dm $^{-3}$ Na $_2$ S $_2$ O $_3$ 混合,混合液中 Ag $^+$ 浓度;
- (2) 确定 0.0010 mol AgBr 能否溶于 100 cm³ 0.025 mol·dm⁻³ 的 Na₂S₂O₃ 溶液中 (生成 Br⁻和 Ag(S₂O₃)³⁻);
- (3) 在(2)的溶液中加入过量的锌后,求残留的 $Ag(S_2O_3)_2^{3-}$ 占原有浓度的百分比(不考虑 Zn^{2+} 与 $S_2O_2^{3-}$ 的配合作用)。

31 15 分

水中铁盐会导致红棕色 $Fe(OH)_3$ 在瓷水槽里沉积,通常是用草酸 $H_2C_2O_4$ 溶液去洗涤,以除去这种沉积物。

试通过计算证明所列两个方程式中哪一个更能表达 Fe(OH)3 的溶解机理。

(1) 酸碱反应的机理

$$2\text{Fe}(OH)_3(s) + 3H_2C_2O_4(aq) \implies 2\text{Fe}^{3+}(aq) + 6H_2O + 3C_2O_4^{2-}(aq)$$

(2) 配离子生成的机理

Fe(OH)₃(s) +3H₂C₂O₄(aq)
$$\longrightarrow$$
 Fe(C₂O₄)³⁻₃ (aq) + 3H₂O+ 3H⁺(aq)
(Fe(C₂O₄)³⁻₃ $K_{\frac{10}{2}} = 1 \times 10^{20}$, Fe(OH)₃ $K_{\text{sp}} = 1.0 \times 10^{-36}$,

 $H_2C_2O_4$: $K_1 = 6 \times 10^{-2}$, $K_2 = 6 \times 10^{-5}$)

四、问答题 (共 40 分, 32、33 题任选 1 题, 34、35 题任选 1 题) 32. 20 分

在实际科研与生产中,化学反应一般都要在加热条件下进行,从热力学与动力学两方面指出加热的原因(假设 $\Delta_r H_m^{\Theta}$ 、 $\Delta_r S_m^{\Theta}$ 、 E_a 不随温度变化)。另外,指出下列几个反应在高温下进行有无热力学的目的。提高反应温度对产率(或转化率)有何影响。

$$\begin{tabular}{ll} \hline \not \boxtimes & & \Delta_r H_m^\ominus / \, k J \cdot mol^{-1} & \Delta_r S_m^\ominus / \, k J \cdot mol^{-1} \cdot K^{-1} \\ \hline (1) \ CaCO_3(s) & \longrightarrow \ CaO(s) + CO_2(g) & 177.85 & 0.16 \\ \hline (2) \ N_2(g) + 3H_2(g) & \longrightarrow \ 2NH_3(g) & -92.38 \\ \hline & & -0.20 \\ \hline \end{tabular}$$

33.20 分

反磁性配离子[Co(en)₃]³⁺ (en 为乙二胺分子)及[Co(NO₂)₆]³⁻的溶液显橙黄色; 顺磁性配合物[Co(H₂O)₃F₃] 及 [CoF₆]³⁻的溶液显蓝色。试定性解释上述颜色的差异。

34. 10 分

配位体与中心金属离子的 π 成键作用将影响分裂能和配合物的稳定性。假定配位体的 π 轨道是空轨道,且轨道能量高于中心金属离子的轨道。请画出在八面体场中,这种 π 成键作用的分子轨道能级图,分析其对配合物的 \triangle 。影响。

35. 10 分

在 25°C,一个容器中充入总压为 100 kPa ,体积为 1:1 的 H_2 和 O_2 混合气体,此时两种气体单位时间内与容器器壁碰撞次数多的是 H_2 还是 O_2 ?为什么?混合气体点燃后(充分反应生成水,忽略生成水的体积),恢复到 25°C,容器中

36.10 分

氧的分压是

请填空回答:

	BeCl ₂	ICl ₃	SF ₆
中心原子杂化轨道 (注明等性或不等性)			
中心原子价层电子对 构型		三角双锥形	
分子空间构型		COLLEGE	
分子有无极性	/6	Oll THE	无

