青岛大学 2012 年硕士研究生入学考试试题

科目代码: 620 科目名称: 分析化学(含仪器分析)(共 4 页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效

一、选择题 (共 10 题, 每题 3 分, 共 30 分)
1-1. 下面四种情况中能造成系统误差的是()
(1) 在空气中放置的基准物质直接进行称量
(2) 指示剂选择错误
(3) 容量仪器未经校准
(4) 过滤沉淀时发生穿滤
(A) 1,2 (B) 1,3 (C) 2,3 (D) 2,4
1-2. 用纸色谱法分离 Fe ³⁺ 、Cu ²⁺ 、Co ²⁺ ,以丙酮-正丁醇-浓 HCl 为展开剂。
若展开剂的前沿与原点的距离为 13cm, 而 Co ²⁺ 斑点中心与原点的距离为
5.2cm,则 Co ²⁺ 的比移值(<i>R</i> _f)为()
(A) 0.63 (B) 0.54
(C) 0.40 (D) 0.36
1-3. 在下列统计量中表征有限次测定数据分散程度的是()
(1) 极差 R (2) 平均偏差 \overline{d}
(3) 标准偏差 s (4)总体标准偏差 σ
(A) 1,3,2 (B) 1,2,4 (C) 1,3,4 (D) 2,3,4
1-4. 以下离子交换树脂属阳离子交换树脂的是()
(A) R — NH_3OH (B) RNH_2CH_3OH
(C) ROH (D) R — $N(CH_3)_3OH$
1-5.下面有关随机误差的表述中正确的是()
(1) 大、小误差出现的概率相同
(2) 正、负误差出现的概率相同
(3) 大误差出现的概率小,小误差出现的概率大
(4) 正误差出现的概率小,负误差出现的概率大
(A) 1,2 (B)1,3 (C)2,3 (D)2,4
1-6. 含有 $0.1250 \mathrm{g I_2}$ 的 KI 溶液 $25 \mathrm{mL}$,每次用 $25 \mathrm{mL}$ CCl ₄ 与之一起振荡。

则萃取二次的萃取率是()
(A) 86.0%	(B) 96.0%
(C) 99.0%	(D) 99.8%
1-7. 在光栅摄谱仪中解决 200.0~	400.0nm 区间各级谱线重叠干扰的最好
办法是()	
(1) 用滤光片; (2) 选用优	质感光板
(3) 不用任何措施; (4) 调节狭	缝宽度
1-8. 低压交流电弧光源适用发射光	· 治谱定量分析的主要原因是()
(1) 激发温度高; (2) 蒸	发温度高
(3) 稳定性好; (4) 激	发的原子线多
	2 时, 为使反应完全度达到 99.9%, 两
电对的条件电位差至少应大于	
(A) 0.09 V	(B)
0.18 V	
(C) 0.27 V	(D)
0.36 V	(= /
1-10. 库仑滴定中加入大量无关电	1解质的作用是()
(1) 降低迁移速度;	
(3) 增大电流效率;	
(3) 7670 100000 7	(1) W.E. G. H. L. A. T. G. W.
二、填空题 (共9题,每题3分	分,共 27 分)
	生成 PbCrO₄↓,沉淀经过滤洗涤后用酸
	f 示剂,用 $Na_2S_2O_3$ 标准溶液滴定,则
$n(Pb^{2+}):n(S_2O_3^{2-})为$	
	——。 计量点不一致所引起的终点误差属
	点的不确定性属于。
	,若混合离子的极性大小的顺序是 A < B
< C, 用极性有机溶剂作展开剂,	
	pH [己知 $K_a(HIO_3) = 2 \times 10^{-1}$] 是
	。(要求写出计算式) 指示剂的吸附能力如下: 二甲基二碘荧
元典>BI>增红>UI>火元典。如用?	去扬司法测定 Br 时, 应选指示

剂;若测定 Cl⁻, 应选 指示剂。

2-6. 某溶液氢离子活度为 1.80×10 ⁻⁵ mol/L , 其有效数字为位,p	Н
为。	
2-7. 电解分析的理论基础表现为,外加电压的量由方程来	决
定,产生的量由定律来计算,电解时间的长短与离子扩	散
有关, 它由定律来描述。	
2-8. 自旋-自旋耦合常数 J 是指, J 值的大	小
取决于,当外磁场强度改变时, J 值。	
2-9 质谱图中出现的信号应符合氮规则,它是指。	
三 、计算题 (共 4 题, 每题 12 分, 共 48 分)	
3-1	
假定泻盐试样为化学纯 MgSO ₄ 7H ₂ O, 称取 0.8000g 试样, 将镁沉淀	为

 $MgNH_4PO_4$ 灼烧成 $Mg_2P_2O_7$,得 0.3900~g; 若将硫酸根沉淀为 $BaSO_4$,灼烧后得 0.8179g,试问该试样是否符合已知的化学式? 原因何在?

 $[M_r(MgSO_4 7H_2O)=246.5, M_r(MgSO_4)=120.4, M_r(H_2O)=18.02,$ $M_r(Mg_2P_2O_7)=222.6, M_r(BaSO_4)=233.4]$ 3-2

用 0.0200 mol/L EDTA 滴定 pH=10.0 每升含有 0.020 mol 游离氨的溶液中的 Cu^{2+} [$c(Cu^{2+})$ =0.0200 mol/L],计算滴定至化学计量点和化学计量点前后 0.1% 时的 pCu'和 pCu 值。[lgK(CuY)=18.8; pH=10.0 时 $lg\alpha_{Y(H)}$ =0.5, $lg\alpha_{Cu(OH)}$ =0.8; Cu-NH₃ 络合物的各级累积常数 $lg\beta_{I}$ ~ $lg\beta_{4}$: 4.13、7.61、10.48、12.59]

3-3.

用 435.8nm 的汞线作拉曼光源, 观察到 444.7nm 的一条拉曼线. 计算 (1) 拉曼位移Δν (cm⁻¹); (2) 反 Stokes 线的波长(nm)。
3-4.

- (1) 在核磁共振波谱法中,常用 TMS(四甲基硅烷) 作内标来确定 化学位移,这样做有什么好处?
- (2) 1,2,2-三氯乙烷的核磁共振谱有两个峰。用 60MHz 仪器测量时, =CH₂ 质子的吸收峰与 TMS 吸收峰相隔 134Hz, ≡CH 质子的吸收

峰与 TMS 吸收峰相隔 240Hz。试计算这两种质子的化学位移值,若改用 100MHz 仪器测试,这两个峰与 TMS 分别相隔多少?

四、问答题 (共 4 题, 共 45 分)

4-1. (10分)

应用库仑分析法讲行定量分析的关键问题是什么?

4-2. (12分)

化合物 C₇H₈O ¹H-NMR 谱图如下:

- (1) 有三组峰
- (2) a. δ =3.8, 单峰, 1 个质子 请写出结构式, 并解释其理由.
 - b. *δ*=4.6, 单峰, 2 个质子
 - c. *δ*=7.2 单峰 5 个质子
- 4-3. (13 分)下表表示离子交换法制备纯水的原理。试指出各种试验的现象和结论。

	原水	原水通过阳	原水通过阴	原水依次通过阳、
		离子交换树脂	离子交换树脂	阴离子交换树脂
EBT 试验				
(pH=10)				
AgNO ₃ 试验				
pH 试验				
结论				

(EBT 试验和 AgNO3 试验若呈阳性,以"+"表示,呈阴性以"-"表示)

4-4 (10分)

何谓梯度洗提?它与气相色谱中的程序升温有何异同之处?