浙江师范大学 2010 年硕士研究生入学考试初试试题

科目名称: 分析化学 科目代码: 871

适用专业: 070302 分析化学

提示:

1、请将所有答案写于答题纸上,写在试题上的不给分;

2、请填写准考证号后6位:

一**、选择题:**(共 20 小题,每小题 2 分,共 40 分)

1为绘制滴定曲线需计算滴定过程浓度的变化值,其滴定前无法计算的是()。

A. 酸碱滴定

B. 络合滴定

C. 氧化还原滴定

D. 沉淀滴定

2. 用 HCl 滴定混合碱溶液,滴定至酚酞变色消耗 HCl V_1mL ,再用 HCl 滴定至 甲基橙变色消耗 $HCl V_2 mL$, 并且 $V_1 < V_2 > 0$, 该混合碱的组成是(

A. Na₂CO₃ – NaHCO₃ B. NaOH – Na₂CO₃ C. NaOH D. Na₂CO₃

3. 已知 H_3PO_4 的 K_{a_1} 、 K_{a_2} 、 K_{a_3} , 其 Na_3PO_4 的 K_{b_1} 与 H_3PO_4 K_a 的关系是

4. EDTA 络合滴定用二甲酚橙作指示剂,测定 Pb²⁺、Bi³⁺混合溶液中 Pb²⁺浓度, 控制酸度用(

A. NH₃ – NH₄Cl

B. HAc - NaAc C. HNO_3 D. $(CH_2)_6N_4$

5. EDTA 的解离常数分别为 $10^{-0.9}$ 、 $10^{-1.6}$ 、 $10^{-2.0}$ 、 $10^{-2.67}$ 、 $10^{-6.16}$ 和 $10^{-10.26}$,在 pH>12 的水溶液中, EDTA 最主要的存在形式是()。

A. $H_{2}Y_{2}^{-}$ B. $H_{2}Y_{2}^{2-}$

C. HY_2^{3-}

D. Y⁴⁻

D.

6. 下列有效数字位数为 2 位数的是()。

2 10	ТИНИМА					
A	A. $\omega_{\text{H}_2\text{SO}_4} = 98.10\%$	o B	. [H ⁺]=0.020	0 mol/L	C. 2.30g	D. pH=7.23
7.	可用下列何种方法。	或小分析测	引试中的随机	【误差()。	
A	A. 校正仪器		B. 增加	测定次数		
(C. 认真细致的操作		D. 测定	时保持环	境的湿度	一致
8.	在 c _{HCl} =1.000 mol/L	的溶液中,	氢离子活度	与氢离子	平衡浓度	的关系是()
A	$A. a_{H^+} = [H^+]$	B. a_{H^+}	<[H ⁺]	C. $a_{H^{+}} >$	(H ⁺]	D. $a_{\text{H}^+} \approx [\text{H}^+]$
9.	有甲、乙两组实验数	7据,甲组	分别为 x_1 、 x_2	x_1, x_2, x_3	x ₄ 和 x ₅ ,	乙组分别为 $2x_1$ 、
2	$2x_1$, $2x_2$, $2x_3$, $2x_4$	口2x5(乙组	是甲组的2	倍)。分别]处理甲、	乙组数据,结果
7	相同的是()。		7	3/6	601	11/11.
I	A. 相对平均偏差 $ar{d}_{ m r}$	B. ⁻⁵	平均偏差 \bar{d}	C. 平均	的值 \bar{x}	D. 标准偏差 s
10.	BaCl ₂ 中含有 NaCl	、KCl 和	FeCl ₃ 等杂质	長,用 H ₂ S	SO ₄ 沉淀 I	Ba ²⁺ 时,BaSO ₄ 沉
ž	定表面第二层吸附的	是(1/2.	
A	A. Na ⁺ B.	K ⁺	C. Fe ³⁺		D. H ⁺	
11.	用银离子选择电极	作指示电	极,电位滴	定测定牛	奶中氯离	子含量时,如以
í	包和甘汞电极作为参	比电极,	盐桥应选用	的溶液为	()	
	\mathbf{A} . KNO ₃ \mathbf{B} .	KC1 C	C. KBr	D.KI		
12.	双波长分光光度计	的输出信	号是 ()		
	A. 试样吸收与参比	比吸收之差	É B.试样λ	₁和λ₂吸↓	文 之差	
_ 1	C 试样在 \1 和 \2 3	及收之和	D.试样在	Ελι的吸收	女与参比在	Ελ₂的吸收之和
13.	离子选择电极的电	极择性系	数可用于	()		
	A. 估计电极的检测	则限	B.估计	共存离子	的干扰程	度
	C.校正方法误差	3/6/20	D.估计	电极线性	响应范围	
14.	原子吸收分析法测	定钾时,	加入1%钠盐	上溶液其化	作用是 ()
	A. 减少背景		B.提高火焰	温度		
	C.提高钾的浓度		D.减少钾电	1离		

您所下载的资料来源于 kaoyan.com 考研资料下载中心 获取更多考研资料,请访问 http://download.kaoyan.com

15. 在色谱分析中,柱长从 1m 增加到 4m ,其它条件不变,则分离度增加()								
A. 4 倍 B.1 倍 C.2 倍 D.10 倍								
16. 用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是 ()								
A. 钠 B.碳 C 铁 D. 硅								
17. 在气相色谱分析中,用于定量分析的参数是()								
A.保留时间 B.保留体积								
C.半峰宽 D.峰面积								
18. 在原子吸收分光光度计中,目前常用的光源是()								
A. 火焰 B. 空心阴极灯								
C. 氙灯 D. 交流电弧								
19. 在直接电位法中的指示电极,其电位与被测离子的活度的关系为 ()								
A. 符合能斯特公式 B. 成正比								
C. 与其对数成正比 D. 无关								
20. 库仑分析与一般滴定分析相比 ()								
A. 需要标准物进行滴定剂的校准								
B. 很难使用不稳定的滴定剂								
C.测量精度相近								
D.不需要制备标准溶液,不稳定试剂可以就地产生								
二、填空题 (共 30 空格,每空格 0.5 分,共 15 分)								
1. 根据酸碱质子理论, 决定酸碱强度的因素是物质对(1)的相对大小和(2);								
写出 HAc 在水溶液中的共轭酸碱对(3), 共轭酸碱对彼此是(4)。								
2. 实验室配有甲基橙和酚酞指示剂溶液,现欲用 0.1000 mol/L NaOH 标准溶液								
滴定 0.10 mol/L HCl 溶液, 应选 <u>(5)</u> 作指示剂,因 <u>(6)</u> 。								
3. 标定 KMnO ₄ 标准溶液常用的基准物有 <u>(7)</u> 和 <u>(8)</u> 。标定 Na ₂ S ₂ O ₃ 标								

准溶液常用的基准物是 (9) , 指示剂是 (10)

- 4. 分布分数是溶液中溶质某种型体的<u>(11)</u> 在其<u>(12)</u> 中的分数。分布分数的特点有: (13) 、 (14) 、 (15) 、 (16) 。(不分顺序)
- 5. ____(17) _是库仑分析法的理论基础。它表明物质在电极上析出的质量与通过电解池的电量之间的关系。其数学表达式为 ____(18) ___。
- 6. 原子发射光谱法定性分析的依据是<u>(19)</u>,对被检测的元素一般只需找出(20) 灵敏线即可判断该元素是否存在。
- 7. 在紫外可见分光光度计中,在可见光区使用的光源是<u>(21)</u>灯,用的棱镜和比色皿的材质可以是<u>(22)</u>;而在紫外光区使用的光源是<u>(23)</u>灯,用的棱镜和比色皿的材质一定是<u>(24)</u>。
- 9. 恒电流电解的优点是<u>(28)</u>, 缺点是<u>(29)</u>, 为此常加入<u>(30)</u> 来改善。
- 三、简答题:(共5小题,每小题5分,共25分)
- 1. 试述佛尔哈德法的滴定条件和优点。 (5分)
- 2. 用基准 Na_2CO_3 标定 HCl 标准溶液,甲基红作指示剂,为提高滴定终点的敏锐性,用加热法消除 H_2CO_3 的影响。试述消除 H_2CO_3 影响的措施和提高滴定终点敏锐性的原理。(5 分)
- 3. 写出 HCl 水溶液的质子条件式,根据质子条件式推导出计算 HCl 水溶液 $[H^{\dagger}]$ 的精确式。 $(5\,\%)$
- 4. 用离子选择电极校准曲线法进行定量分析通常需加总离子强度调节缓冲液, 请问使用总离子强度调节缓冲液有何作用?(5分)
- 5. 比较原子发射光谱仪五种激发光源性能及应用范围。(5分)
- 四.分析方案设计题(共2小题,每小题5分,共10分)

- 1. 试设计氧化还原滴定法测定铜盐中铜含量的的分析方案(方法原理、试剂、步骤、条件和浓度计算式等。(5分)
- 2. 根据已学的分析方法,设计植株中铁含量的测定的方法。(5分)

五. 计算题(共8小题,共60分)

- 1. 欲将 $100.00 \text{ mL } 0.2500 \text{ mol·L}^{-1}$ HCl 标准溶液调节成对 $CaCO_3$ 的滴定度 $T_{\text{HCI/CaCO}_3} = 0.01001 \text{ g·mL}^{-1}, 问需加多少 \text{ mL 纯水。} (M_{CaCO_3} = 100.09 \text{g·mol}^{-1})$ (6 分)
- 2. 实验室测定某样品中 A 组分的质量分数,平行测定 6 次的平均值为 35.05%, s=0.50%,请计算: (1)置信度为 90%时 μ 的置信区间; (2)若上述数据为 3 次测定的平均值, μ 的置信区间又为多少? 比较两次计算结果可得出什么结论? (8分)

附: tP.f值表(双边)

	married to the control of the contro
90%	95%
6.31	12.71
2.92	4.30
2.35	3.18
2.13	2.78
2.02	2.57
1.94	2.45
	6.31 2.92 2.35 2.13 2.02

- 3. 用 NaOH 溶液将含有 0.10mol/L NH₃-0.18mol/L NH₄⁺(均为平衡浓度)的 Zn²⁺溶液的 pH 调至 10.00(lg $\alpha_{(ZnOH)}=2.40$),试计算该溶液中 Zn²⁺的总副反应系数 α_{Zn} (不考虑溶液体积的变化)。已知:锌氨络合物的累积形成常数 $\beta_1 \sim \beta_1$ 分别为 2.27,4.61,7.01 和 9.06; p $K_{a(NH_4^+)}=9.26$ 。(8 分)
- 4. 有浓度为 0.1000 mol/L 的三元酸(${
 m H}_3{
 m A}$),其 $K_{{
 m a}_1}$ =1.0×10⁻², $K_{{
 m a}_2}$ =1.0×10⁻⁶,

 K_{a_3} =1.0×10⁻¹⁰,试用准确滴定判别式判断:用 0.1000 mol/L NaOH 标准溶液滴定 H_3A 时,有几个 pH 突跃,能否分步滴定?写出滴定反应式。(8分)

- 5. 用原子吸收分光光度法测定矿石中的钼。称取试样4.23g,经溶解处理后,转移入100mL容量瓶中.。吸取两份10.00mL矿样试液,分别放人两个50.00mL容量瓶中,其中一个再加入10.00mL(20.0μg/mL)标准钼溶液,都稀释到刻度。在原子吸收分光光度汁上分别测得吸光度为0.314和0.586,计算矿石中钼的含量。(6分)
- 6. 用氟离子选择性电极测定天然水中的氟,取水样 50. 0mL 于 100mL 容量瓶中,加 TISAB 5mL,测得其电位值为-192mV (vs. SCE);再加入 1. 0×10⁻²mo1/L 的标准氟溶液 1. 00mL,测得其电位值为-150mV (vs. SCE),氟电极的响应斜率 s 为 59. 0/n mV,计算水样中氟离子的浓度。(6 分)
- 7. 为测定防蚁制品中砷的含量,称取试样 3.00g,溶解后用肼将 As(V) 还原为 As(III)。在弱碱介质中由电解产生的 I_2 来滴定 As(III),电流强度为 50.00mA,经过 15min6s 达到终点,计算试样中 As_2O_3 的质量分数。(As_2O_3 的相对分子质量为 197.8) (6 分)
- 8. 在某色谱条件下,分析只含有二氯乙烷、二溴乙烷及四乙基铅三组分的样品,结果如下表:

	二氯乙烷	二溴乙烷	四乙基铅
相对质量校正因	1.00	1. 65	1. 75
子	100	HILL	
峰面积 (cm²)	1.50	1.01	2.82

试用归一化法求各组分的含量。在本题中,如果在色谱图上除三组分外,还出现其他杂质峰,能否仍用归一化法定量?若用甲苯为内标物(其相对质量校正因子为 0.87),甲苯与样品的配比为 1:10,测得甲苯的峰面积为 0.95cm²,三个主要组分的数据同表,试求各组分的含量。(12分)

您所下载的资料来源于 kaoyan.com 考研资料下载中心 获取更多考研资料,请访问 http://download.kaoyan.com