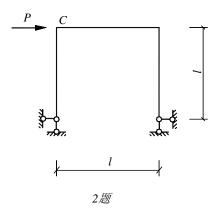
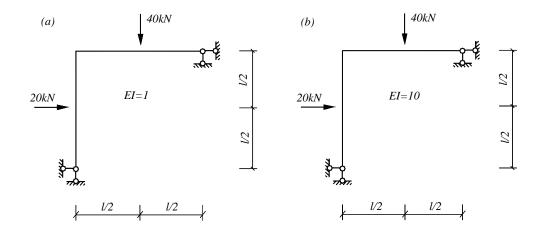

哈尔滨工业大学

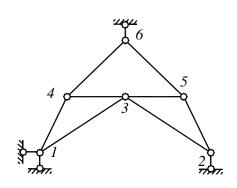
2006年硕士研究生考试试题

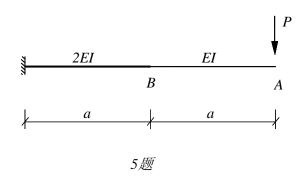
一. 选择题

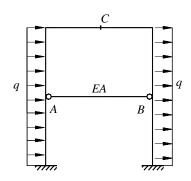

1. 图示结构,各杆EI常数,截面C、D两处的弯矩值 M_C 、 M_D 分别为: (A) (单位: kN·m)。


A. 2.0, 1.0; B. -2.0, 1.0; C. 2.0, -1.0; D. -2.0, -1.0

解: 先将 a 图化为 b 图,只有一个角位移未知量的结构,当结点作用力偶时,杆端弯矩按照转动刚度分配。弯矩图见图 b。


- 2. 图示结构, EI=常数, M_{CA}为: ()
 - A. Pl/4(右侧受拉); B. Pl/4(左侧受拉); C. Pl/2(右侧受拉); D. Pl/2(左侧受拉)

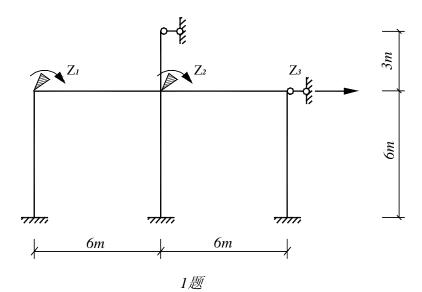

- 3. 图示两刚架的 EI 均为常数,并分别为 EI=1 和 EI=10,这两刚架的内力关系为: (A)
- A、M 图相同; B. M 图不同; C. 图 a 刚架各截面弯矩大于图 b 刚架各相应界面弯矩;
 - D. 图 a 刚架各截面弯矩大于图 b 刚架各相应界面弯矩


- 4. 对图示体系作几何组成分析时,用三刚片组成规则进行分析,则三个刚片应该是:
- (D.)
 - A. 刚片 235、刚片 134 与基础; B. 刚片 134、链杆 56 与基础;
 - C. 刚片 235、链杆 34 与基础; D. 刚片 235、链杆 46 与基础

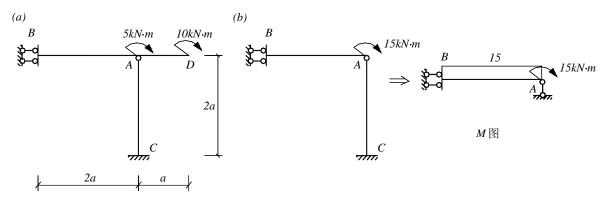
- 5. 图示结构 A 截面转角(设顺时针为正)为:()
 - A. $2Pa^2$; B. $-2Pa^2$; C. $\frac{5Pa^2}{4EI}$; D. $-\frac{5Pa^2}{4EI}$

6. 图示对称结构 EI=常数,中点截面 C 及 AB 杆内力应满足:

A. $M_C=0$, $Q_C\neq 0$, $N_C=0$, $N_{AB}=0$;

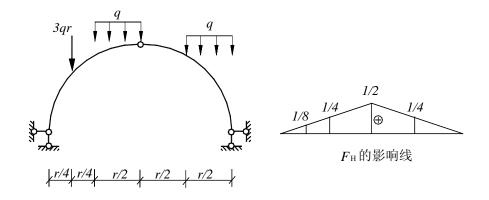

B. $M_C=0$, $Q_C\neq 0$, $N_C=0$, $N_{AB}\neq 0$;

C. $M_{C}\neq 0$, $Q_{C}=0$, $N_{C}\neq 0$, $N_{AB}=0$;

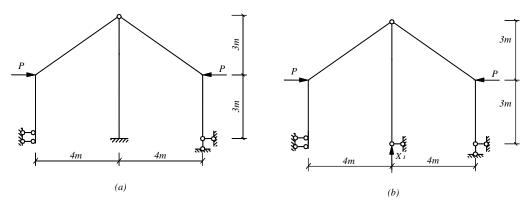

D. $M_{C}\neq 0$, $Q_{C}=0$, $N_{C}\neq 0$, $N_{AB}\neq 0$.

二. 填充题

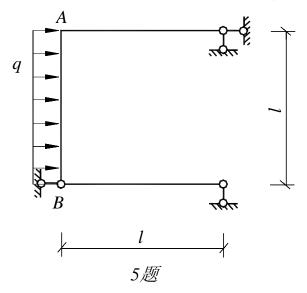
1.图示结构各杆件刚度i相等,则位移法典型方程的 r_{11} = _______, r_{22} =______



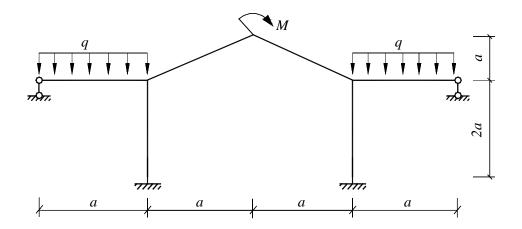
2.用力矩分配法计算图示结构,EI=常数,可得: M_{AB}= _____ kN·m, M_{BA}= ____ 15 _____ kN·m,M_{CA}= __0 ____ kN·m。



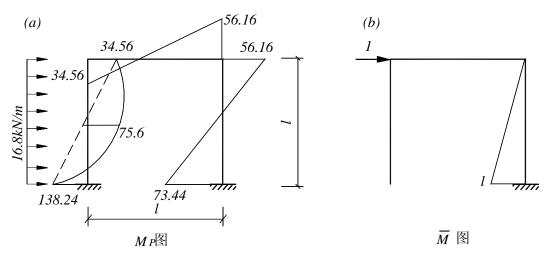
解:将图 a 化为图 b,即可画出弯矩图。注意:由于忽略轴向变形时 A 点无水平位移,故 AC 杆无弯曲,也就无弯矩。


3.图示三铰拱中水平推力 F_H 等于 $\frac{5qr}{8}$ 。

4.图 b 为图 a 所示结构的基本体系, EI=常数。试列出其力法方程。

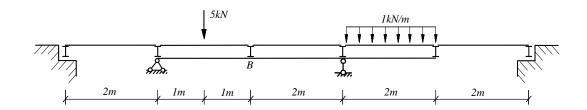


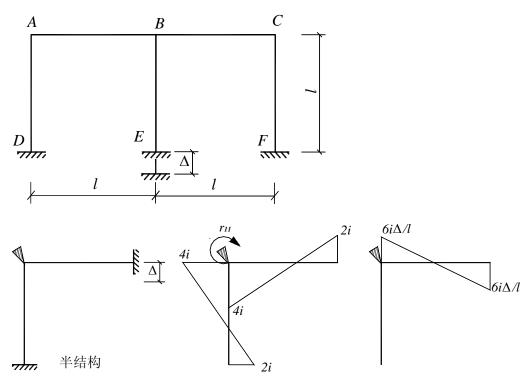
5.图示结构EI=常数,在给定荷载作用下,Q_{AB}=_____



三. 计算题

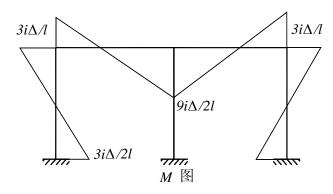
1.列出用位移法并利用对称性计算图示刚架的基本结构及典型方程。

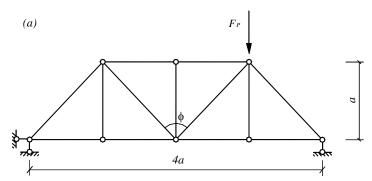

2.已知荷载作用下结构的 M 图如图 a 所示,求横梁的水平位移。横梁的抗弯刚度为 3EI,竖柱的抗弯刚度均为 2EI, l=6m 。

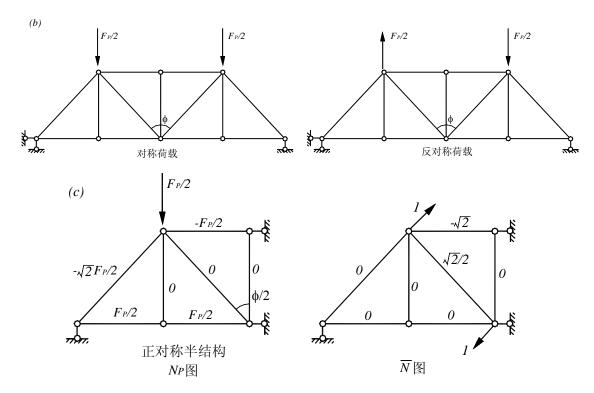

解:本题为超静定结构已知 M 图求位移。应在相应基本结构上施加水平单位力,取基本结构如图 b。用图乘法:

$$\Delta = \frac{1}{2EI} \left[-\left(\frac{1}{2} \times l \times 56.16 \times \frac{l}{3}\right) + \left(\frac{1}{2} \times l \times 73.44 \times \frac{2l}{3}\right) \right] = \frac{7.56}{EI} \times 6 \times 6 = \frac{272.16}{EI} (\rightarrow)$$

3. 利用影响线求图示梁在固定荷载下截面B的弯矩 M_B 之值。

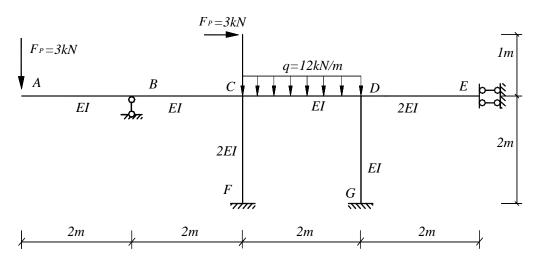

4. 已知图示刚架支座 E 下沉Δ,用位移法作 M 图, EI=常数。

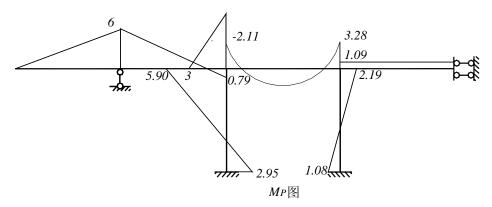

解: 位移法,对称性(支座位移)


$$egin{aligned} r_{11} &= 4i + 4i = 8i\;; \quad \Delta_{1C} &= -rac{6i}{l} \cdot \Delta\;; \ \\ r_{11}\Delta_1 + F_{1P} &= 0 \;, 則 \; 8i \cdot \Delta_1 - rac{6i}{l}\Delta = 0 \Longrightarrow \Delta_1 = rac{3\Delta}{4l} \end{aligned}$$

根据 $M=M_P+\overline{M}\Delta_1$ 求得 M 图。

5. 图示桁架各杆 EA 相同,求图示φ角的改变量。





解:结构对称,荷载为一般荷载,将荷载分解为正反对称之和(图 b)。 ϕ 角的改变量,在反对称荷载下为零,只需计算正对称荷载。简化正对称半结构,施加一对相反的单位力,见图 c。

$$\frac{\Delta_{\phi}}{2} = \frac{N_P \overline{N}}{EA} l = \frac{\sqrt{2}}{2EA} F_P a$$
, ф角的改变量 $\Delta_{\phi} = \frac{\sqrt{2}}{EA} F_P a$

6、 用力矩分配法计算图示结构,并作 M 图(计算两轮)。

解:力矩分配法。

结点	С			D			В	F	G	E
杆端	СВ	CF	CD	DC	DG	DE	ВС	FC	GD	ED
分配系数	3/15	8/15	4/15	4/10	4/10	2/10				
M^F	-3		-4	4			-6			
	6/3	16/3	8/3—	- 4/3				8/3		
			-32/30-	— <i>-64/30</i>	-64/30	-32/30			-64/60	32/30
	0.213	1.707	0.853 -	-0.427						
				-0.057	-0.057	-0.028		-0.028	-0.028	-0.028
最后弯矩	-0.79	5.90	-2.11	3.28	-2.19	-1.09	-6	2.92	-1.07	1.07